Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.924
Filtrar
1.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
2.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618280

RESUMO

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Assuntos
Catequina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Luteolina , Simulação de Acoplamento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38622359

RESUMO

Community cohesion plays a critical role in the determination of an individual's health in social science. Intriguingly, a community structure of gene networks indicates that the concept of community cohesion could be applied between the genes as well to overcome the limitations of single gene-based biomarkers for precision oncology. Here, we develop community cohesion scores which precisely quantify the community ability to retain the interactions between the genes and their cellular functions in each individualized gene network. Using breast cancer as a proof-of-concept study, we measure the community cohesion score profiles of 950 case samples and predict the individualized therapeutic targets in 2-fold. First, we prioritize them by finding druggable genes present in the community with the most and relatively decreased scores in each individual. Then, we pinpoint more individualized therapeutic targets by discovering the genes which greatly contribute to the community cohesion looseness in each individualized gene network. Compared with the previous approaches, the community cohesion scores show at least four times higher performance in predicting effective individualized chemotherapy targets based on drug sensitivity data. Furthermore, the community cohesion scores successfully discover the known breast cancer subtypes and we suggest new targeted therapy targets for triple negative breast cancer (e.g. KIT and GABRP). Lastly, we demonstrate that the community cohesion scores can predict tamoxifen responses in ER+ breast cancer and suggest potential combination therapies (e.g. NAMPT and RXRA inhibitors) to reduce endocrine therapy resistance based on individualized characteristics. Our method opens new perspectives for the biomarker development in precision oncology.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Redes Reguladoras de Genes , Medicina de Precisão , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Tamoxifeno/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Biomarcadores
4.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612711

RESUMO

Breast cancer is the most common malignancy and its incidence is increasing. It is currently mainly treated by clinical chemotherapy, but chemoresistance remains poorly understood. Prefolded proteins 4 (PFDN4) are molecular chaperone complexes that bind to newly synthesized polypeptides and allow them to fold correctly to stabilize protein formation. This study aimed to investigate the role of PFDN4 in chemotherapy resistance in breast cancer. Our study found that PFDN4 was highly expressed in breast cancer compared to normal tissues and was statistically significantly associated with stage, nodal status, subclasses (luminal, HER2 positive and triple negative), triple-negative subtype and disease-specific survival by TCGA database analysis. CRISPR knockout of PFDN4 inhibited the growth of 89% of breast cancer cell lines, and the triple-negative cell line exhibited a stronger inhibitory effect than the non-triple-negative cell line. High PFDN4 expression was associated with poor overall survival in chemotherapy and resistance to doxorubicin and paclitaxel through the CREBP1/AURKA pathway in the triple-negative MDAMB231 cell line. This study provides insightful evidence for the value of PFDN4 in poor prognosis and chemotherapy resistance in breast cancer patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Aurora Quinase A , Prognóstico , Mama , Células MCF-7
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612760

RESUMO

IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral , Neoplasias Pulmonares/genética , Interleucina-1alfa/genética
6.
Cell Death Dis ; 15(3): 199, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604999

RESUMO

Epidermal growth factor receptor (EGFR)-targeted drugs (erlotinib, etc.) are used to treat multiple types of tumours. EGFR is highly expressed in most triple-negative breast cancer (TNBC) patients. However, only a small proportion of TNBC patients benefit from EGFR-targeted drugs in clinical trials, and the resistance mechanism is unclear. Here, we found that PDZ domain containing 1 (PDZK1) is downregulated in erlotinib-resistant TNBC cells, suggesting that PDZK1 downregulation is related to erlotinib resistance in TNBC. PDZK1 binds to EGFR. Through this interaction, PDZK1 promotes EGFR degradation by enhancing the binding of EGFR to c-Cbl and inhibits EGFR phosphorylation by hindering EGFR dimerisation. We also found that PDZK1 is specifically downregulated in TNBC tissues and correlated with a poor prognosis in TNBC patients. In vitro and in vivo functional assays showed that PDZK1 suppressed TNBC development. Restoration of EGFR expression or kinase inhibitor treatment reversed the degree of cell malignancy induced by PDZK1 overexpression or knockdown, respectively. PDZK1 overexpression sensitised TNBC cells to erlotinib both in vitro and in vivo. In conclusion, PDZK1 is a significant prognostic factor for TNBC and a potential molecular therapeutic target for reversing erlotinib resistance in TNBC cells.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Membrana/uso terapêutico
7.
Genome Med ; 16(1): 55, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605363

RESUMO

BACKGROUND: Most primary Triple Negative Breast Cancers (TNBCs) show amplification of the Epidermal Growth Factor Receptor (EGFR) gene, leading to increased protein expression. However, unlike other EGFR-driven cancers, targeting this receptor in TNBC yields inconsistent therapeutic responses. METHODS: To elucidate the underlying mechanisms of this variability, we employ cellular barcoding and single-cell transcriptomics to reconstruct the subclonal dynamics of EGFR-amplified TNBC cells in response to afatinib, a tyrosine kinase inhibitor (TKI) that irreversibly inhibits EGFR. RESULTS: Integrated lineage tracing analysis revealed a rare pre-existing subpopulation of cells with distinct biological signature, including elevated expression levels of Insulin-Like Growth Factor Binding Protein 2 (IGFBP2). We show that IGFBP2 overexpression is sufficient to render TNBC cells tolerant to afatinib treatment by activating the compensatory insulin-like growth factor I receptor (IGF1-R) signalling pathway. Finally, based on reconstructed mechanisms of resistance, we employ deep learning techniques to predict the afatinib sensitivity of TNBC cells. CONCLUSIONS: Our strategy proved effective in reconstructing the complex signalling network driving EGFR-targeted therapy resistance, offering new insights for the development of individualized treatment strategies in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Afatinib/farmacologia , Afatinib/uso terapêutico , Linhagem da Célula , Receptores ErbB , Transdução de Sinais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
8.
J Exp Clin Cancer Res ; 43(1): 102, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566092

RESUMO

BACKGROUND: Dysregulation of cholesterol metabolism is associated with the metastasis of triple-negative breast cancer (TNBC). Apolipoprotein A1 (ApoA1) is widely recognized for its pivotal role in regulating cholesterol efflux and maintaining cellular cholesterol homeostasis. However, further exploration is needed to determine whether it inhibits TNBC metastasis by affecting cholesterol metabolism. Additionally, it is necessary to investigate whether ApoA1-based oncolytic virus therapy can be used to treat TNBC. METHODS: In vitro experiments and mouse breast cancer models were utilized to evaluate the molecular mechanism of ApoA1 in regulating cholesterol efflux and inhibiting breast cancer progression and metastasis. The gene encoding ApoA1 was inserted into the adenovirus genome to construct a recombinant adenovirus (ADV-ApoA1). Subsequently, the efficacy of ADV-ApoA1 in inhibiting the growth and metastasis of TNBC was evaluated in several mouse models, including orthotopic breast cancer, spontaneous breast cancer, and human xenografts. In addition, a comprehensive safety assessment of Syrian hamsters and rhesus monkeys injected with oncolytic adenovirus was conducted. RESULTS: This study found that dysregulation of cholesterol homeostasis is critical for the progression and metastasis of TNBC. In a mouse orthotopic model of TNBC, a high-cholesterol diet promoted lung and liver metastasis, which was associated with keratin 14 (KRT14), a protein responsible for TNBC metastasis. Furthermore, studies have shown that ApoA1, a cholesterol reverse transporter, inhibits TNBC metastasis by regulating the cholesterol/IKBKB/FOXO3a/KRT14 axis. Moreover, ADV-ApoA1 was found to promote cholesterol efflux, inhibit tumor growth, reduce lung metastasis, and prolonged the survival of mice with TNBC. Importantly, high doses of ADV-ApoA1 administered intravenously and subcutaneously were well tolerated in rhesus monkeys and Syrian hamsters. CONCLUSIONS: This study provides a promising oncolytic virus treatment strategy for TNBC based on targeting dysregulated cholesterol metabolism. It also establishes a basis for subsequent clinical trials of ADV-ApoA1 in the treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Cricetinae , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/metabolismo , Adenoviridae/genética , Linhagem Celular Tumoral , Apolipoproteína A-I/genética , Macaca mulatta , Mesocricetus , Colesterol
9.
Front Endocrinol (Lausanne) ; 15: 1347762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567311

RESUMO

Objective: Hormone receptor (HR)-low/HER2-negative breast cancers (BCs) are more likely to be basal-like BCs, with similar molecular features and gene expression profiles to HR-negative (estrogen receptor <1% or negative and progesterone receptor <1% or negative) BCs. Recently, with the clinical application of adjuvant intensive therapy for triple-negative breast cancer (TNBC), the prognosis of TNBC patients without pathological complete response (pCR) has significantly improved. Therefore, it is necessary to reanalyse the prognostic characteristics of clinically high-risk HR-low/HER2-negative BC. Methods: According to the inclusion and exclusion standards, 288 patients with HR-low/HER2-negative BC and TNBC who received NAC and were followed up between 2015 and 2022 at three breast centres in Hunan Province, China, were enrolled. Inverse probability of treatment weighting (IPTW) was utilized to mitigate imbalances in baseline characteristics between the HR-low/HER2-negative BC group and TNBC group regarding event-free survival (EFS) and overall survival (OS). The primary clinical endpoints were pCR and EFS, while the secondary endpoints included OS, objective response rate (ORR), and clinical benefit rate (CBR). Results: The pCR rate (27.1% vs. 28.0%, P = 1.000), ORR rate (76.9% vs. 78.3%, P = 0.827) and CBR rate (89.7% vs. 96.5%, P = 0.113) after NAC were similar between the HR-low/HER2-negative BC and the TNBC group. EFS in patients with non-pCR from the 2 groups was significantly inferior in comparison to patients with pCR (P = 0.001), and the 3-year EFS was 94.74% (95% CI = 85.21% to 100.00%) and 57.39% (95% CI =43.81% to 75.19%) in patients with pCR and non-pCR from the HR-low/HER2-negative BC group, respectively, and 89.70% (95% CI = 82.20% to 97.90%) and 69.73% (95% CI = 62.51% to 77.77%) in the TNBC patients with pCR and non-pCR, respectively. Conclusions: In the real world, the therapeutic effects of NAC for HR-low/HER2-negative BCs and TNBCs were similar. EFS of patients with non-pCR in the HR-low/HER2-negative BC group was inferior to that of the TNBC group with non-pCR, suggesting that it is necessary to explore new adjuvant intensive therapy strategies for these patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Terapia Neoadjuvante , Prognóstico , Estudos de Coortes , China
10.
Sci Rep ; 14(1): 8241, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589452

RESUMO

Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.


Assuntos
Aminopiridinas , Hipertermia Induzida , Indazóis , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico , RNA Mensageiro , Fatores de Transcrição de Choque Térmico/genética
11.
Sci Adv ; 10(14): eadj4009, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569025

RESUMO

Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins. Moreover, SF3A2 accelerated TNBC progression by, at least in part, specifically regulating the alternative splicing of makorin ring finger protein 1 (MKRN1) and promoting the expression of the dominant and oncogenic isoform, MKRN1-T1. Furthermore, SF3A2 participated in the regulation of both extrinsic and intrinsic apoptosis, leading to cisplatin resistance in TNBC cells. Collectively, these findings reveal a previously unknown role of SF3A2 in TNBC progression and cisplatin resistance, highlighting SF3A2 as a potential therapeutic target for patients with TNBC.


Assuntos
Cisplatino , Neoplasias de Mama Triplo Negativas , Humanos , Cisplatino/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Processamento Alternativo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
12.
Breast Cancer Res ; 26(1): 60, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594783

RESUMO

BACKGROUND: Small nucleolar RNAs (snoRNAs) play key roles in ribosome biosynthesis. However, the mechanism by which snoRNAs regulate cancer stemness remains to be fully elucidated. METHODS: SNORA68 expression was evaluated in breast cancer tissues by in situ hybridization and qRT‒PCR. Proliferation, migration, apoptosis and stemness analyses were used to determine the role of SNORA68 in carcinogenesis and stemness maintenance. Mechanistically, RNA pull-down, RNA immunoprecipitation (RIP), cell fractionation and coimmunoprecipitation assays were conducted. RESULTS: SNORA68 exhibited high expression in triple-negative breast cancer (TNBC) and was significantly correlated with tumor size (P = 0.048), ki-67 level (P = 0.037), and TNM stage (P = 0.015). The plasma SNORA68 concentration was significantly lower in patients who achieved clinical benefit. The SNORA68-high patients had significantly shorter disease-free survival (DFS) (P = 0.036). Functionally, SNORA68 was found to promote the cell stemness and carcinogenesis of TNBC in vitro and in vivo. Furthermore, elevated SNORA68 expression led to increased nucleolar RPL23 expression and retained RPL23 in the nucleolus by binding U2AF2. RPL23 in the nucleolus subsequently upregulated c-Myc expression. This pathway was validated using a xenograft model. CONCLUSION: U2AF2-SNORA68 promotes TNBC stemness by retaining RPL23 in the nucleolus and increasing c-Myc expression, which provides new insight into the regulatory mechanism of stemness.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , RNA , Núcleo Celular , Regulação Neoplásica da Expressão Gênica , Carcinogênese/genética , Proliferação de Células/genética , Fator de Processamento U2AF/genética
13.
Cancer Lett ; 589: 216820, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574883

RESUMO

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Assuntos
Antineoplásicos , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Gencitabina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral
14.
J Exp Clin Cancer Res ; 43(1): 115, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627816

RESUMO

BACKGROUND: Chemoresistance and immunosuppression are two major obstacles in the current anti-cancer treatments. This study investigates the involvements of a CCAAT enhancer binding protein delta (CEBPD)/vesicle associated membrane protein 3 (VAMP3) axis in paclitaxel (PTX) resistance and immune evasion in triple-negative breast cancer (TNBC). METHODS: PTX resistance-related genes were screened by bioinformatics. CEBPD and VAMP3 expression in clinical TNBC samples was examined by immunohistochemistry. Three PTX-resistant TNBC cell lines (MDA-MB-231/PTX, MDA-MB-468/PTX and MDA-MB-453/PTX) were generated, and their drug resistance was analyzed. Autophagy of cells was analyzed by immunofluorescence staining. Interaction between CEBPD and VAMP3 promoter was identified by immunoprecipitation and luciferase assays. The extracellular expression of programmed cell death-ligand 1 (PD-L1) in TNBC cells was detected. Extracellular vesicles (EVs) from TNBC cells were isolated to examine their effects on CD8+ T cell exhaustion. RESULTS: CEBPD and VAMP3 were upregulated in chemo-resistant tissue samples and in PTX-resistant TNBC cells. The CEBPD downregulation enhanced PTX sensitivity of cells. However, further upregulation of VAMP3 in cells restored PTX resistance, which was likely due to the activation of autophagy, as the autophagy antagonist chloroquine enhanced PTX sensitivity of cells. CEBPD was found to bind to the VAMP3 promoter to activate its transcription. The CEBPD/VAMP3 axis also increased the PD-L1 expression in the conditioned medium of TNBC cells. The TNBC cell-derived EVs increased the exhaustion of co-cultured CD8+ T cells. CONCLUSION: This study provides novel evidence that CEBPD plays a key role in enhancing PTX resistance in TNBC cells across various subtypes through VAMP3-mediated autophagy activation. Additionally, the CEBPD/VAMP3 axis also increases extracellular PD-L1 level, delivered by cancer cell-derived EVs, to suppress CD8+ T cell-mediated anti-tumor immune response. These significant observations may provide new insights into the treatment of TNBC, suggesting CEBPD and VAMP3 as promising targets to overcome treatment resistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteína 3 Associada à Membrana da Vesícula , Proteína delta de Ligação ao Facilitador CCAAT , Antígeno B7-H1/genética , Antígeno B7-H1/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Paclitaxel/farmacologia
15.
Syst Rev ; 13(1): 100, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576013

RESUMO

BACKGROUND: Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an earlier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classification and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) after neoadjuvant treatment in Asian breast cancer patients. METHODS: A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemotherapy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confidence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed using Cochran's Q-test and I2 test statistics. RESULTS: In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) (p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast cancer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated with TA in the neoadjuvant setting (p=0.001). CONCLUSIONS: In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with additional powered studies. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021246295.


Assuntos
Neoplasias da Mama , Hidrocarbonetos Aromáticos com Pontes , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Antígeno Ki-67/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Taxoides/uso terapêutico , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/uso terapêutico , Variação Genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
16.
Sci Adv ; 10(14): eadj7540, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579004

RESUMO

Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , 60645 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Imagem Óptica , Linhagem Celular Tumoral
17.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474826

RESUMO

The crosstalk between oncogenic signaling pathways plays a crucial role in driving cancer development. We previously demonstrated that dietary polyphenols, specifically resveratrol (RSV) and other stilbenoids, epigenetically target oncogenes for silencing via DNA hypermethylation in breast cancer. In the present study, we identify signal transduction regulators among RSV-hypermethylated targets and investigate the functional role of RSV-mediated DNA hypermethylation in the regulation of Hedgehog and Wnt signaling. Non-invasive ER-positive MCF-7 and highly invasive triple-negative MCF10CA1a human breast cancer cell lines were used as experimental models. Upon 9-day exposure to 15 µM RSV, pyrosequencing and qRT-PCR were performed to assess DNA methylation and expression of GLI2 and WNT4, which are upstream regulators of the Hedgehog and Wnt pathways, respectively. Our results showed that RSV led to a DNA methylation increase within GLI2 and WNT4 enhancers, which was accompanied by decreases in gene expression. Consistently, we observed the downregulation of genes downstream of the Hedgehog and Wnt signaling, including common targets shared by both pathways, CCND1 and CYR61. Further analysis using chromatin immunoprecipitation identified increased H3K27 trimethylation and decreased H3K9 and H3K27 acetylation, along with abolishing OCT1 transcription factor binding. Those changes indicate a transcriptionally silent chromatin state at GLI2 and WNT4 enhancers. The inhibition of the Wnt signal transduction was confirmed using a phospho-antibody array that demonstrated suppression of positive and stimulation of negative Wnt regulators. In conclusion, our results provide scientific evidence for dietary polyphenols as epigenetics-modulating agents that act to re-methylate and silence oncogenes, reducing the oncogenic signal transduction. Targeting such an action could be an effective strategy in breast cancer prevention and/or adjuvant therapy.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Neoplasias da Mama/metabolismo , Resveratrol , Ouriços/genética , Ouriços/metabolismo , Metilação de DNA , Epigênese Genética , Neoplasias de Mama Triplo Negativas/genética , Via de Sinalização Wnt , DNA/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
18.
Cancer Rep (Hoboken) ; 7(3): e2007, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38425247

RESUMO

BACKGROUND: Insufficient understanding of the pathogenesis and tumor immunology of triple-negative breast cancer (TNBC) has limited the development of immunotherapy. The importance of tumor microenvironment (TME) in immunotyping, prognostic assessment and immunotherapy efficacy of cancer has been emphasized, however, potential immunogenic cell death (ICD) related genes function in TME of TNBC has been rarely investigated. AIMS: To initially explore the role and related mechanisms of ICD in TNBC, especially the role played in the TME of TNBC, and to identify different relevant subtypes based on ICD, and then develop an ICD-related risk score to predict each TNBC patient TME status, prognosis and immunotherapy response. METHODS AND RESULTS: In this study, we identified distinct ICD-related modification patterns based on 158 TNBC cases in the TCGA-TNBC cohort. We then investigated the possible correlation between ICD-related modification patterns and TME cell infiltration characteristics in TNBC. By using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analysis, we created a risk scoring system (ICD score) to quantifiably evaluate the impact of ICD-related modification patterns in individual TNBC patient. Two different ICD-related modification patterns were found with significant differences in immune infiltration. Lower ICD score was correlated with higher immune infiltration, tumor mutational burden and significantly enriched in immune-related pathways, indicating a strong ability to activate immune response, which might account for relatively favorable prognosis of TNBC patients and could serve as a predictor to select suitable candidates for immunotherapy. We used two independent cohorts, GSE58812 cohort and Metabric cohort to validate prognosis and immunohistochemistry for preliminary in vitro validation. CONCLUSION: This study evidenced that the ICD-related modification patterns might exert pivotal roles in the immune infiltration landscape of TNBC and ICD score might act as potential predictors of prognostic assessment and immunotherapy response. This research provides unique insights for individualize immune treatment strategies and promising immunotherapy candidates screening.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Morte Celular Imunogênica , Prognóstico , Imunoterapia , Fatores de Risco , Microambiente Tumoral
19.
EMBO Mol Med ; 16(4): 823-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480932

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Transcriptoma , Perfilação da Expressão Gênica , Transdução de Sinais , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral
20.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542081

RESUMO

Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)-BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias da Mama/metabolismo , Arábia Saudita/epidemiologia , Regiões Promotoras Genéticas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Metilação de DNA , Fatores de Risco , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Predisposição Genética para Doença , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...